A facile protocol for the immobilisation of vesicles, virus particles, bacteria, and yeast cells.
نویسندگان
چکیده
Immobilisation of liposomes and cells is often a prerequisite for long-term observations. The most common immobilisation approaches rely on surface modifications, encapsulation in porous materials or trapping in microfluidic channels by means of hurdle-like structures. While these approaches are useful for larger mammalian cells, the immobilisation of smaller organisms like bacteria and yeast or membrane model systems such as liposomes typically requires modification of their outer membrane to ensure that they are stably arrested at a defined position. Here, we present a protocol to immobilise biological objects, which can interact with hydrophobic cholesterol. A water-soluble molecule (cholesterol-PEG-biotin) is used as a linker, which can bind via avidin to biotinylated BSA (bBSA) previously absorbed on a glass surface. For better visualization, bBSA is arranged in a dot pattern by means of microcontact printing, and a microfluidic channel is used for sample supply. We show that our approach can be used to successfully immobilise artificial liposomes of different sizes, native (cell-derived) vesicles, vaccinia virions, Saccharomyces cerevisiae and Escherichia coli, simply by flushing the objects through the channel. Under these conditions, small liposomes and biological objects are stably arrested at high flow rates, while larger cells and liposomes can be released again by application of high shear stress. This protocol can be applied for long-term studies where fluids must be changed repeatedly, for measuring fast kinetics where rapid fluid exchange is essential, and to study the effects of shear stress.
منابع مشابه
A Simple and Rapid Protocol for Producing Yeast Extract from Saccharomyces cerevisiae Suitable for Preparing Bacterial Culture Media
Yeasts, especially Saccharomyces cerevisiae, are one of the oldest organisms with broad spectrum of applications, owing to their unique genetics and physiology. Yeast extract, i.e. the product of yeast cells, is extensively used as nutritional resource in bacterial culture media. The aim of this study was to develop a simple, rapid and cost benefit process to produce the yeast extract. In this ...
متن کاملA Simple and Rapid Protocol for Producing Yeast Extract from Saccharomyces cerevisiae Suitable for Preparing Bacterial Culture Media
Yeasts, especially Saccharomyces cerevisiae, are one of the oldest organisms with broad spectrum of applications, owing to their unique genetics and physiology. Yeast extract, i.e. the product of yeast cells, is extensively used as nutritional resource in bacterial culture media. The aim of this study was to develop a simple, rapid and cost benefit process to produce the yeast extract. In this ...
متن کاملEngraftment of plasma membrane vesicles into liposomes: A new method for designing of liposome-based vaccines
Objective(s):One of the major challenges in the field of vaccine design is choosing immunogenic antigens which can induce a proper immune response against complex targets like malignant cells or recondite diseases caused by protozoan parasites such as leishmaniasis. The aim of this study was to find a way to construct artificial liposome-based cells containing fragments of target’s cell membran...
متن کاملCLONING AND EXPRESSION OF HUMAN IFNα2B GENE IN SACCHAROMYCES CEREVISIAE
Interferon is a protein secreted by eucaryotic cells following stimulation by viruses, bacteria, and many other immunogenes. Recent medical studies indicate that interferons have effective role in the treatment of virus infections, immunodeficiency and certain types of cancer such as hairy cell leukaemia (HCL). The aim of the present study is to apply yeast strain for secreting human IFNα2b fol...
متن کاملDielectrophoretic effect of nonuniform electric fields on the protoplast cell
In recent years, dielectrophoresis based microfluidics systems have been used to manipulate colloids, inert particles, and biological microparticles, such as red blood cells, white blood cells, platelets, cancer cells, bacteria, yeast, microorganisms, proteins, DNA, etc. In the current study the governing electric potential equations have been solved in the presence of cell for the purpose of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Integrative biology : quantitative biosciences from nano to macro
دوره 4 12 شماره
صفحات -
تاریخ انتشار 2012